
Assembly and Programming of a
Robot Monkey to Study Imitation

Learning in Marmosets
Bachelor’s Thesis

Jaú Gretler

gretleja@ethz.ch

Neurotechnology Group
Institute of Neuroinformatics

Dep. of Information Technology and Electrical Engineering
ETH Zürich

Supervisors:
Joris Gentinetta

Dr. Wolfger von der Behrens
Prof. Dr. Mehmet Fatih Yanik

May 30, 2023

Abstract

The Neurotechnology Group is interested in exploring how marmosets learn from
each other. To investigate this process a robot monkey was built, with the intent
of letting the robot demonstrate motions to the alive monkeys. The metal body of
the robot was designed and fabricated prior to this thesis. This thesis describes
the assembly of the robot and discusses how end effector trajectories can be
generated from waypoints using the ROS based framework MoveIt.

i

Contents

Abstract i

1 Introduction 1

2 Methods 2

2.1 Hardware . 2

2.1.1 Metal model . 2

2.1.2 3D printed parts . 3

2.1.3 Power supply . 7

2.1.4 Threads . 8

2.1.5 Wheels . 10

2.1.6 Inconsistent thread attachment 11

2.1.7 Turnbuckles . 11

2.1.8 Joint limits . 12

2.2 Plate modifications . 13

2.2.1 Motors . 13

2.3 ROS . 14

2.4 Raspberry Pi . 15

2.4.1 Pin Extension board . 16

2.4.2 Reduction of jitter by switching to PiGPIOFactory() for
servo control . 16

2.5 URDF . 16

2.5.1 URDF exporter . 16

2.6 MoveIt . 18

2.6.1 Overview . 18

2.6.2 Planning Groups . 18

2.6.3 MoveIt Setup Assistant 18

2.6.4 Move Group Node . 19

ii

Contents iii

2.6.5 Interfacing the move-group-node via the Motion Planning
Plugin for Rviz . 20

2.6.6 Interfacing the move-group-node via the moveit-commander 21

2.7 Relaying joint_states via listener node 21

3 Results 22

3.1 Friction in the thread paths of joints LSH/RSH 22

3.2 Imprecise joint range data in URDF 23

3.3 Cartesian path planning . 23

3.4 Interactive Marker position vs. eef position 25

3.4.1 Overview . 25

3.4.2 Workaround . 26

3.4.3 Automatic IK validation for newly set waypoints 27

3.5 Saving and loading trajectories via the MMGN 27

4 Discussion 28

4.1 Solution approaches concerning excessive friction in LSH/RSH joints 28

4.2 Solution approach concerning imprecise URDF data 29

4.3 Shortcomings of current control mechanisms 29

4.3.1 Dual arms . 29

4.3.2 Synchronization of plans for different planning groups . . 31

4.3.3 Integration of different saved motions into multi motion
sequences . 31

4.4 Shortcomings of waypoint management 31

4.5 Natural movements . 32

Bibliography 33

A RPP Setup A-1

A.1 Operating system . A-1

A.2 Static IP Setup . A-2

B ROS Setup B-1

B.1 Overview . B-1

B.2 ROS Environment Variables Setup B-1

Contents iv

C MoveIt Setup C-1

C.1 Overview . C-1

C.2 MoveIt Setup Assistant . C-1

C.2.1 Launch Assistant . C-1

C.2.2 URDF Exporter . C-1

C.2.3 Configuring the moveit config package C-2

C.2.4 Downloading developed packages C-3

C.2.5 Building all packages . C-4

C.2.6 Launching the nodes . C-4

D Controlling the Servos D-1

D.1 Overview . D-1

D.1.1 Control formats . D-1

D.2 Prerequisites for launch of joint control node D-3

D.3 Set Duty Cycle . D-3

D.4 Monkey_listener . D-4

E Monkey Interface E-1

E.1 Overview . E-1

E.2 Usage notes regarding mode [3] E-2

F Abbreviations F-1

F.1 Hardware . F-1

G Acknowledgments G-1

Chapter 1

Introduction

Marmoset monkeys are interesting to the global research community, for reasons
such as their direct gaze, smooth brain surface and learning by imitation of other
group members [1]. In order to investigate their ability for imitation learning it
was decided to build a robot, with body proportions and dimensions mirroring
the ones of real marmoset monkeys.

In most popular humanoid robot designs the joints are actuated by motors placed
at or in close proximity to the joints, since chains, belts and other means of torque
transmission introduce slack, friction and an overall increased complexity to the
robotic system. However, this placement of the actuators limits the potential
for miniaturization of humanoid robots for two reasons. Firstly, the point at
which the motors cannot be integrated into the robotic limb without breaking the
humanoid appearance is reached quite fast. For example, typical commercially
available servo motors have a volume of about 10 − 30 cm3, which results in
certain minimal limb diameters. Secondly, there exists a correlation between
size of an electric motor and his efficiency, which additionally renders the use of
small electric motors for joint actuation less efficient than using motors featuring
a higher footprint [2]. As mentioned, an alternative is to place the motors far
away from the joints and transmit the torque by e.g threads. Using threads for
torque transmission, the torque can be generated by commercially available servo
motors outside the robots body and the humanoid appearance can be conserved.
This is crucial for the construction and actuation of a robotic monkey measuring
no more than 20 cm in height. Thus, the first part of this thesis describes and
discusses the process of assembling a robot design based on torque transmission
by threads.

In order to program the robot monkey to perform complex movements, a frame-
work is needed which accepts a parameterized pose trajectory and returns a time
series of joint states for the robot to follow in order to execute the target move-
ment. There exists a multitude of frameworks for motor and sensor integration or
motion generation for robotic platforms [3],[4]. The second part of this thesis de-
scribes and discusses how ROS and the MoveIt "motion planning platform" can
be used to program end effector trajectories for the robotic marmoset monkey.

1

Chapter 2

Methods

2.1 Hardware

2.1.1 Metal model

The metal body of the robot was designed prior to this thesis and machined by the
D-ITET Werkstatt right before the start of this thesis. The proportions and
dimensions of the robot closely mirror the ones of marmoset monkeys. Namely,
the robot is as tall as it’s living counterpart and has the same ratio of arm length
to body height.

Figure 2.1: The metal body of the monkey robot

The joint actuation amounts to 5 degrees of freedom (DOF) per arm and 2 DOF
for the head.

2

2. Methods 3

2.1.2 3D printed parts

The robot is mounted on a 3D printed box, which contains:.

• 16 servo motors

• a Raspberry Pi 4 (called RPP for the remainder of this text)

• a GPIO pin extension board

• up to 14 extension cables connecting the servos to the extension board

Figure 2.2: The robot mounted on the servo-box

This box, which is called servo-box for the remainder of this text, underwent
three design iterations, from which the first two were 3D-printed and assembled.

2. Methods 4

V1

As can be seen in figure 2.3 the servo-box V1 contains mounting slots for 16 servo
motors (8 per side) and a platform for the robot to be screwed onto. In addition,
the backplate is removable, such that a RPP and cables connecting it to the servo
motors can be fit into a cavity inside the box.

Figure 2.3: Servo box V1

The main problem with V1 was that a wrong servo model was used for its design.
As is further described in the motor section, the first servo motor chosen was the
KST X10. The 3D model of KST X10 (on the basis of which the screw holes in
the base of the box were placed and the base’s width determined) was not the
correct one, i.e described a different version of the ordered servo. Thus the servo
motors could not be be attached to the 3D printed serv-box V1.

2. Methods 5

V2

To mitigate these problems a second iteration was designed, featuring the follow-
ing differences:

Figure 2.4: Servo box V2

• It is wider, such to accommodate the true height of the servo

• The increased spacing between motors allows for wheels with greater di-
ameter. A greater wheel diameter means more thread length can be pulled
which implies a greater ROM for the joint.

• It has two symmetric support pillars at a 45° angle from where the robot
stands to where the motors are located. The intention behind these two
pillars is to withstand the rotational force exerted from the servos pulling
the base of the robot towards the center of the servo box V2.

• The base-part is the bottom part of the box into which the servos are
screwed. Upon slicing the STL file of this part in the slicing software it
was discovered that it didn’t fit into the building room of the 3D-printer.
Therefore the part was split in two and the border line modeled in such a
way that the two halves could be stuck in to one another (see figure 2.5).

• Two rectangular excisions where made at the far end of the back half of the
bottom part. One of them allows some of the output ports of the RPP to
be accessed directly and the other one allows air to flow trough the bottom
part cavity and cool the RPP’s CPU.

2. Methods 6

Figure 2.5: The two halves of the base part of V2 can be stuck into one another

The main problem with servo-box V2 was located in the front-part (the part onto
which the robot is screwed).

Difficulties arose from screwing in the four M4 screws holding the robot in place.
This, because there was not enough space for the head of the screw to be fully
screwed into the material and because it was quite hard to access the screws’
head with a hexagonal screw driver. It is important for the head of the screws to
be fully screwed into the material, since otherwise the 45° support pillars cannot
fit their end piece into the roughly rectangular excision left for them in the front
part.

V3

The box V3 design looks as follows:

Figure 2.6: Servo box V3

2. Methods 7

The only new feature of servo-box V3 is that the problems with the front part
(described above) were resolved by adding space for the four M4 screw heads
and increasing the screw canal diameter to 5mm. The V3 front parts have not
been printed yet, since the problems with the front-part V2 could be resolved by
manual intervention with a handheld drill.

2.1.3 Power supply

The leading principle behind the power supply circuit was to make it impossible
to confuse the 9V supply connection for the motors with the 5V supply connection
for the RPP.

Figure 2.7: The power circuit prevents powering the RPP with 9V

As can be seen in figure 2.7 the power-supply-box (PSB) contains two power
supplies, 5V and 9V, for the RPP and the motors respectively. The chosen
models are:

• 5V: LRS-150F-5 (Rated current: 22A)

• 9V: PBA-150F-9 (Rated current: 16.7A)

The chosen servo motors (KST A12-T) draw around 3.3A at their max torque
of 2.0 Nm, adding up to a total max current draw of 16 ∗ 3.3A = 52.8A. The
supply of 16.7A should never the less suffice, since the total max current will not

2. Methods 8

be drawn for extended periods of time. Current peaks can be mitigated through
a capacitor in the pin extension board (which is not installed at the time of
writing).

From the PSB a C13 cord carries the common ground, the 5V and the 9V to the
monkey robot box.

Since wall power goes directly into the PSB the only removable cable present is
the C13 power cord which has a male end at the PSB and a female end at the
servo-box V2. Thus it is impossible (by only using the provided equipment) to
connect the RPP to 9V.

As an additional security measure a switch was installed at the PSB which
switches the 9V line. The idea behind this switch is to be able to turn off the mo-
tors quickly in case a faulty program instructs the joints to perform movements
which violate joint limits.

2.1.4 Threads

In order to create motion for the joints of the robot, a servo motor is connected
to each joint. The connection for a Joint J is formed through two threads,
originating from a wheel attached to a servo motor, going through the limbs of
the robot and pulling from two opposite sides at J (see figure 2.13).

For the thread a threaded fisherman’s line called Spiderwire was chosen. Besides
a high tear resistance this fisherman’s line also features low friction and no flex.

The threads were installed in the robot according to the following diagrams.

Figure 2.8: Labels for threads (left arm)

2. Methods 9

The joint IDs used in table 2.8 are described in the table in section F.1.

The following two diagrams show how the threads are guided trough the plates
A,B and C which can be seen in figure 2.8.

Figure 2.9: Mapping of threads through the plates in the metal arms (left arm),
POV: from shoulder. Analogous for the right arm. Section 2.2 discusses the
difference C vs C’.

Figure 2.10: Mapping of threads through the shoulder (left arm)

2. Methods 10

A key aspect of guiding the threads trough the plates and other openings/tunnels
is to maintain a symmetry of the threads regarding rotational axes. This ensures
that the actuation of one joint, or rather the resulting thread movement, does
not affect other joints. There are two different types of joints to consider:

• rotational joints (W,SH,SF): axis of rotation parallel to stretched robot arm

• bending joints (EB, SL): axis of rotation perpendicular to stretched robot
arm

For rotational joints, the symmetry is maintained per construction since the
threads run parallel to the rotational axis. The main reason why the bend-
ing joints are not affected by threads running through them either, is because
whenever one thread of a joint is pulled, the other one is automatically loosened.
Thus the tension a bending joints experiences from threads running through it
remains roughly constant.

2.1.5 Wheels

A central piece of the kinematic chain for the joint movements (see figure 2.13)
are the wheels . These are circular 3D printed pieces of resin attached to each
servo. All of the wheels were printed using a resin printer. When trying to print
the wheels with a FDM-printer it was observed that the inner teeth of the wheel,
which lock onto the servo, could not be printed with the desired precision.

Figure 2.11: Desired shape of in-
ner teeth of wheel

Figure 2.12: Preview of slicer for FDM
print: too imprecise

2. Methods 11

2.1.6 Inconsistent thread attachment

In the servo-box there are two rows of servos, mirrored on the plane spanned by
the threads coming from the shoulders of the robot to the servos. Assuming that
no two threads leading to a wheel cross each other, the mirroring of the servos
implies that the wheels on the two sides of the mentioned plane turn in opposite
direction.

This is however not the case, due to assembly issues of the turnbuckles. By
the time it was realized that the two screws of the turnbuckles are not inter-
changeable, some screws had already been attached to threads. Thus, for a small
number of wheels, the attached threads had to be swapped.

The mappings in the joint-control-node incorporate these few swapped threads,
thus it is only mentioned here as an assembly detail to be considered for future
modifications of the robot.

2.1.7 Turnbuckles

The turnbuckles not only provide a single DOF per thread regarding it’s tension
but also facilitate the assembly process. Their benefit during assembly is that the
connection joint-wheel-servo can be severed without actually cutting a thread.

The tension DOF they provide can be used to fine tune each thread such that
the rotational range of the servo-wheel can better cover the rotational range of
the joints.

However, this DOF brings with it the problem that the turnbuckles can loosen, ei-
ther slowly over time or quickly if a lot of tension is applied to them. Readjusting
can be quite time-consuming.

Thus, after a satisfactory tension configuration had been reached, a screw locking
agent was applied to lock the configuration of all turnbuckles. It should however
still be possible to manually readjust the turnbuckles.

2. Methods 12

2.1.8 Joint limits

Figure 2.13: The wheels translate the rotation of the servo to rotation of the
joints via the threads (The red and green line represent threads)

How far a joint J with threads t1 and t2 can be rotated depends on:

1. The mechanical coupling of the two links on either side of J. In the context
of this project this is a given, since the links are coupled by ball bearings,
with the only limiting factor being collisions of the links among each other
(disregarding the threads).

2. The ratio R2
R1

3. The possible change in thread length δL. δL depends on:

• The initial length L0 of the threads. L0 in turn depends on one hand
on the configuration of the turnbuckles and the initial rotation of the
wheel

• The load Fload attached to J . Fload also includes the friction t1 and t2
experience.

• The thread cross section area

• The stiffness of the thread

2. Methods 13

2.2 Plate modifications

As can be seen in the figure 2.9, there are two versions of plate C. Diagram C
depicts the state of this plate as it was initially fabricated.

The initial idea had been that threads 1,5,9 and 10 all go through the central hole
of plate C. (Note that the last sentence referred to the thread id’s introduced in
figure 2.8 but also holds true for the analogous case in the right arm).

To manually insert all 4 threads into this central hole of plate C requires fine
motor skills but is possible. However, 4 threads in one hole create considerable
friction.

In an attempt to reduce this friction one hand thread was removed. This does
not hinder the contraction of the hand (needed for object grasping), since the
remaining hand thread can be split into two in order to recreate the original
symmetric pulling at the hand joint. The release will happen automatically,
since the elastic material of the hand will spring into the expanded form as soon
as the pulling of the threads stops. Mitigation of friction is further discussed in
section 4.1.

2.2.1 Motors

KST X10

As soon as servo-box V1 was printed and the monkey robot was attached it was
possible to do preliminary tests with the KST X10 servo motor to determine
whether it has enough torque to achieve the desired joint rotations.

The results of these tests were, that all joints could be rotated satisfactorily with
the exception of RSH and LSH. The only difference in the kinematic chain be-
tween these joints and the others are the lengths of the paths which the threads
have to traverse between the wheels and the joints.

Observing that the KST X10 was not able to pull hard enough at the RSH/LSH
joints two measures were implemented:

1. Two new holes were drilled, next and symmetric to the central hole of
plate C, as represented by the diagram C’ in figure 2.9. The effects of this
approach are described in section 3.1.

2. New servos with (for our purposes) better specifications were ordered

2. Methods 14

KST X10 vs. KST AT-12

The following table lists the relevant technical specifications for the KST X10
and KST AT-12 [5],[6]:

Key characteristics
Characteristic KST X10 KST AT-12
Torque @8.4V 1.06N 1.8N

Speed/Torque @7.4V -430
◦
s

N∗m -236
◦
s

N∗m
Def. Travel Angle ±50° = 100° Total ±60° = 120° Total

As can be seen in the table, the A12-T:

• has over 70% more torque than the X10

• loses less speed than the X10 when torque is increased

An additional benefit of the higher torque of the A12-T is that it can provide the
same torque of the X10 while using a greater wheel diameter. The greater wheel
diameter in turn increases the joint’s ROM, as described in section 2.1.8.

For these reasons it was expected that the A12-T would perform better than the
X10. Both in terms of enabling the robot to rotate the LSH/RSH joints and
in terms of smooth operation of the other joints (e.g no noise emissions). Thus
there are now 14 servos of type A12-T installed in the robot monkey box, leaving
two slots open for two more servo motors to be installed. A possible utilization
of these two slots is mentioned in section 4.1.

2.3 ROS

Overview

It was decided to use ROS (the Robotic Operating System) as the basic frame-
work to program the robot. ROS allows for comparatively easy integration and
control of sensors and motors of any given robot whose physical characteristics
are described in a URDF (Unified Robot Description Format) file

ROS is structured like a graph, with nodes representing different elements of the
robot (e.g a sensor node, a motor control node) and the vertices representing
communication paths between the nodes.

2. Methods 15

ROS Nodes

A ROS node is a process that performs computations [7]. One node might com-
pute a trajectory for the robot, another node might run a graphical simulation
of the robot.

ROS Topics

Nodes communicate with each other over so called topics which have a certain
type. The communication is often organized such that one node publishes some
information to a certain topic and another node subscribes to this topic in order
to gain access to the published information

So for example, there is a node called move-group (see section about MoveIt)
which, upon successfully planning a trajectory for e.g the arm of a robot, pub-
lishes the necessary joint-states to the /controller_joint_states topic. A second
node called joint-state-publisher is subscribed to this topic, reads the joint-states
and publishes them in a slightly different form to the topic /joint_states. A third
node, responsible for controlling the motors, is subscribed to the /joint_states
topic and uses the information it reads there to control the motors.

Rviz

Rviz (short for ROS Visualization) is both a simulation tool and an interactive
GUI, that can be used to visualize the effects that the ROS network has on a
model of the robot.

2.4 Raspberry Pi

One of the useful features of ROS is that the above mentioned nodes can be run
on different devices. Thus it makes sense to run computationally expensive code
(e.g inverse kinematics solving and path planning) on a desktop PC and only run
simple motor control algorithms on a RPP.

The RPP has the additional benefit that it comes with around 40 GPIO (gen-
eral purpose input output) pins which can be used to transmit the pulse width
modulated (PWM) signal generated by the motor control program to the servo
motors themselves.

For the above stated reasons a RPP of the 4th generation was used featuring
2GB of RAM.

2. Methods 16

2.4.1 Pin Extension board

There was a lot of jitter to be observed when the servo motors were first tested.
Jitter (the minute oscillation of the servo motors rotational position around a
certain angle) can occur when the PWM signal driving the motor is noisy.

A electronic component which can reduce jitter by transforming imperfect PWM
signals into cleaner ones is a motor driver board. An additional benefit of such a
PCB is that it facilitates separating the voltage supply circuit of the motors and
the circuit generating the PWM signal (in our case the RPP).

For these reasons a Pin Extension Board (PEB) was ordered to be stacked on
top of the GPIO pins of the RPP.

Since the PEB with a motor output voltage of 9V did not arrive on time a different
version of the board was ordered with a motor output voltage of 5V. It was tried
to modify the circuit of the PEB such that 9V could be externally applied for the
motors without damaging the circuit of the extension board. However, the PEB
did not produce any PWM output signal. This was probably due to the manual
modifications which must have destroyed some of the circuit.

2.4.2 Reduction of jitter by switching to PiGPIOFactory() for
servo control

Initially, the RPP native RPi.GPIO library was used to directly set the duty
cycle for each motor [8]. After switching to generating the PWM signals with the
PiGPIOFactory() (provided by the gpiozero library), most joints move completely
free of jitter. That is, appart from jitter caused by insufficient motor torque to
overcome the friction of some thread paths.

2.5 URDF

ROS requires a URDF file of the robot, which must contain all relevant infor-
mation about the physical parts of the robot. This includes each link’s relative
position and orientation towards his parent link and for each joint its rotational
limits in radians.

2.5.1 URDF exporter

In order to avoid having to create this rather complex file manually it was decided
to export the STEP model from the 3D-modeling software SolidWorks (SW) as
URDF file. The STEP file for the robot monkey was created during a previous
thesis. Instructions for how to export the URDF file can be found in the appendix.

2. Methods 17

It is worth mentioning that a URDF can but does not have to include collision
boxes. When calculating and animating trajectories for parts of the robot, Rviz
constantly checks if any of the existing links collide with each other. If no colli-
sion boxes are specified, the duration of this computation solely depends on the
geometric complexity of the existing robot links. For a typical robot these com-
putations thus are so slow, that Rviz looses it’s value as visualization software
since the animation is essentially frozen.

By creating simple 3D-shapes, which enclose each link, and including these in the
URDF, these computations are fast enough to allow real time collision detection.
The collision boxes should have simple geometries and tightly envelop the robots
links, as can be seen in figure 2.14.

Figure 2.14: The (brown) collision boxes with the (gray) robot underlaid

Note that the collision detection can be further sped up by creating a collision
matrix in the MoveIt setup assistant.

2. Methods 18

2.6 MoveIt

2.6.1 Overview

In order to program movements for the robot it was decided to use the (ROS
based) MoveIt "motion planning platform", since it offers features such as:

• Multiple inverse kinematics (IK) solvers including the possibility of imple-
menting and integrating a custom IK solver

• A variety of motion planning algorithms for different applications

• A setup assistant which allows the user to configure MoveIt for a custom
robot.

• A tight integration with other ROS related programs such as Rviz and
Gazebo, both popular simulation environments for robots controlled with
ROS.

It is worth mentioning a few important concepts and introducing some naming
conventions.

2.6.2 Planning Groups

Planning groups are composed of a subset of the links and joints of the robot. It
makes sense to create one planning group for each kinematic chain of the robot.
Following this principle, planning groups for both arms and the head were created
using the MoveIt Setup Assistant.

2.6.3 MoveIt Setup Assistant

In order to make use of MoveIt functionalities a so called moveit_config _pack-
age has to be created. This can be done by going through different setup steps in
the MoveIt Setup Assistant (MSA), the most important being the configuration
of the planning_groups. It was decided to create a a different planning_group
for each kinematic chain (i.e the two arms seperately and the head). For each
planning_group it is possible to set:

• An IK solver (including custom implementations)

• A motion planner

• kinematic parameters such as Goal Position Tolerance, Search Timeout etc.

2. Methods 19

• Named poses, (e.g "Raised left arm") which contain joint states and can
be accessed later through GUI and code interfaces

A detailed description of how the package has to be configured can be found in
the appendix in section C.2.2.

2.6.4 Move Group Node

The move-group-node has the structure of a ROS node and serves as an integra-
tor, gathering information about the robot state and providing different interfaces
for the user to control the robot [9].

Figure 2.15: High level diagram of the functionalities of the move-group-node
(taken from the MoveIt Documentation [9])

2. Methods 20

2.6.5 Interfacing the move-group-node via the Motion Planning
Plugin for Rviz

It is possible to interface the move-group-node via the GUI inside Rviz. If spec-
ified so in the launch file (see appendix), the MoveIt’s motion planning plugin
opens a panel inside Rviz. Through this panel the user can manipulate the joint-
states for different planning groups of the robot and plan trajectories for the
groups.

This panel offers:

• Visual display of the joint limits set in the URDF. By visually comparing
the ROM of the robot in Rviz and the physical robot the accuracy of
the joint limits in the URDF can be evaluated (the importance of which
becomes apparent in section 3.2).

• The possibility to plan for a single pose or joint goal. By dragging around
the end effector (eef) of an arm with a so called interactive marker or by ma-
nipulating the joints using sliders (see figure 2.17) we can bring a planning-
group into a certain configuration, thus creating a goal-state. Then we can
plan a trajectory, which moves the planning-group from it’s current state
(start-state) to the previously defined goal state.

• The automatic animation of a trajectory of a planning group from start-
state to goal-state.

• The execution of the mentioned trajectory. Note that this will only publish
the joint-states contained in the trajectory to the ROS network and that
for the robot to physically move, another node needs to use these published
joint-states to control the servo motors.

• The possibility of using robot poses defined in the moveit-config-pkg as
start- and goal-states. This is convenient because whenever a planning
group was brought into some configuration (physically or only in Rviz) and
we wish to revert the planning group back to a default pose we defined in
the moveit-config-pkg, we can just select this pose as goal-state and then
plan and execute the trajectory (see figure 2.16).

2. Methods 21

Figure 2.16: MotionPlanning Panel
[Planning]

Figure 2.17: MotionPlanning Panel
[Joint sliders]

2.6.6 Interfacing the move-group-node via the moveit-commander

In order to programmatically accomplish the actions described in the section
above one can make use of the python interface called move-group-commander.
The shell based robot control interface created during this thesis consists of dif-
ferent calls to the move-group-commander. In contrast to only planning to a
single pose goal, the interface enables the user to construct a trajectory based on
waypoints.

2.7 Relaying joint_states via listener node

In order for any trajectory to be executed on the physical robot, the joint-states
time series contained in the trajectory has to be read from the ROS network and
be used to control the servo motors. To accomplish this a node was written which
contains a subscriber subscribed to the joint_states topic. Since this node runs
on the RPP it can use the received joint-state data to control the robot. This
process is further described in section D.4.

Chapter 3

Results

3.1 Friction in the thread paths of joints LSH/RSH

As mentioned in section 2.1.4, each thread experiences a different amount of
friction on it’s path through the robot. Unsurprisingly, the threads whose paths
contain the highest number of turns, experience the greatest resistance. These
are the threads connected to the LSH/RSH joint.

During operation of the A12-T motors in the different joints it can be observed
that all motors can quietly rotate to min/max duty cycle except the motors
attached to joints LSH and RSH.

When the LSH motor tries to rotate to a any given angle, the motor only rotates
to a few degrees short of the target angle, stops and begins to beep loudly. If
the motor is manually rotated these few degrees such that he rests at the target
angle, the noise emissions stop. This behavior will be called range-limit-weakness
for the remainder of this text.

The two new holes which were drilled (see section 2.2) and the accompanying
reduction of friction for threads 1 and 5 did bring about a noticeable improvement
regarding the rotation range of the LSH/RSH joint. Not enough however to
eradicate the noise emissions.

In spite of this minimal gain in rotational range it was decided to deactivate the
LSH/RSH joints for the remainder of the project, such that only reliable and
fully functional joints are included. A straightforward way to deactivate joints
it to set their rotational range to 0 rad degree in the URDF file (i.e by setting
lower-limit and upper-limit to the same value).

Possible approaches to further decrease the friction in joints LSH/RSH are dis-
cussed in section 4.1.

22

3. Results 23

3.2 Imprecise joint range data in URDF

A typical ROS setup involves sensors measuring the joint-states and other metrics
of the robot constantly and publishing these to the ROS network such that the
robot state used for calculations and for visualization is as realistic as possible.

Since there are no sensors used in this project the robot state is solely constructed
based on the URDF. There are two problems with that.

First, the whole control of the robot is feed-forward since no feedback is present.
Secondly, the calculations and movements are only as precise as the data in the
URDF is.

One of the crucial entries in the URDF is the information about the joint limits,
which have to be specified for each joint individually in the URDF-exporter.

A problem arises from the fact, that the physical rotational limits are susceptible
to different perturbations. For example it happened multiple times during the
testing of the motors, that faulty control commands were given and as a result
the joints were rotated beyond their usual rotational limits. When this happened,
the physical joint limits sometimes shifted a few degrees. Solution approaches
are discussed in section 4.2.

3.3 Cartesian path planning

In order to create complex trajectories for the arms of the robot a parametrization
of the desired motion is needed. A possible parametrization are points in 3D-
space, which, when interpolated, describe a path, that the eef of the robot arm
can follow. For the remainder of this text, such points will be called waypoints
and the path will be called cartesian path, the latter taking it’s name from a
specific MoveIt functionality.

The compute_cartesian_path functionality of MoveIt [10] takes as input a list
of 3D points as input and returns a JointTrajectory (series of time stamped joint
states). This JointTrajectory describes a path for the arms eef from the first to
the last waypoint.

As mentioned in section 2.6, it is necessary to implement the move-group-node-
interface in order to access functionalities such as the cartesian-path-planner via
code.

During this project, a ROS package was written which implements this interface.
This package is called Monkey Interface (IM), which is the name under which the
rest of this text will refer to the implementation of the move-group-node interface.
Having implemented this interface, it is now possible to either hard-code a series
of waypoints in the interface itself and use it to compute a cartesian path or to
insert the waypoints from somewhere else.

3. Results 24

It was decided that an intuitive way of setting the waypoints is to drag the eeff of
the targeted robot arm to desired positions in the Rviz GUI and then save this
eef position as waypoint.

To achieve this in code, a subscriber was inserted into the MI which listens to the
interactive_marker/feedback topic, through which Rviz publishes information
(such as pose) about the interactive marker to the ROS network.

Thus it is now possible to manually specify an eef-path of arbitrary length in the
Rviz-GUI (see figure 3.1), to compute a JointTrajectory for these waypoints and
to execute the trajectory on the physical robot (via the listener-node).

Figure 3.1: The blue spheres describe waypoints which were set manually.

3. Results 25

It was found that in order for the compute_cartesian_path method to succeed,
its input argument eef_step_size had to be set to a value greater than the largest
distance between any two consecutive waypoints of that path. This eef-step-size
is usually set to a value much smaller than the distances between waypoints,
since it refers to the interpolation step size the eef ought to make between to
waypoints. If the eef-step-size is set to smaller than the mentioned distance,
no valid path is found. During this project no explanation was found as to
why no interpolation can take place. However, this has proved to be irrelevant
concerning the planning and execution of cartesian paths, since the cartesian
paths are made up of straight line segments and the amount of interpolation
points on these segments only changes the speed, with which the eef completes
the motion. The speed can be adjusted separately.

3.4 Interactive Marker position vs. eef position

3.4.1 Overview

As described in section 3.3 the first step towards creating a cartesian plan involves
manipulation of the interactive markers (IM). When an IM in Rviz is used, it’s
new location and other information are published to the interactive_marker/feedback
topic. When developing this method it was first believed that the IM pose being
published at time t0 must be identical to the pose of the eef at time t0.

The planning attempts made by waypoints, which were set following this assump-
tion, failed about half of the time. It was then understood, that when dragging
the IM around in Rviz it was not the final position of the IM which is published
(and which coincides with the eef’s position) but instead the position in Rviz
simulation space at which the IM has last been dragged to by the mouse.

Put differently: The IM can for the sake of the argument be understood as a rope
attached to the eef on one side and to the users mouse cursor on the other side.
This rope can be used to drag the eef around the Rviz simulation space. When
the mouse (and thereby the IM) is released, the last position update sent to the
interactive_marker/feedback topic is the position at which the user last held the
rope.

3. Results 26

Figure 3.2: The pink spheres display the last few recorded IM positions. The eef
of the arm is constantly being dragged towards the IM.

A blue sphere marks constantly the position of the IM, and the rope-effect is
visible through the fact that the blue sphere sometimes is not at the same location
as the eef, when it is being dragged (see figure

3.4.2 Workaround

To ensure that the last position published really is the one of the eef, the following
workaround is suggested. Whenever a waypoint was set (by dragging around one
end of the rope) and the IM has bounced back, the user can perform a manip-
ulation without consequences on the IM. The only possible futile manipulation
is to rotate the IM, which has no consequences since the robots arms don’t have
enough DOFs to allow arbitrary orientations. Thus, the last IM postion published
is the one where the eef is resting at after the futile rotation.

3. Results 27

3.4.3 Automatic IK validation for newly set waypoints

The above mentioned workaround of performing a futile manipulation on the IM
itself does not prevent the user from setting waypoints which are outside the
robots reach. To mitigate this, a method in the MI was implemented which tries
to plan a trajectory from the last eef pose to a newly set waypoint Wnew. The
existence of such a trajectory implies that Wnew is in the robots reach and that
Wnew can safely be appended to the valid waypoints so far collected. Using this
validation method, a user can feel more confident when creating longer waypoint
collections. If the user tries to set an invalid waypoint, a error message appears
and the waypoint does not appear in the GUI. The check is done in less 200 ms,
thus it doesn’t add a noticable overhead in the waypoint collection.

3.5 Saving and loading trajectories via the MMGN

To facilitate creation and management of single arm trajectories the following
services were implemented in the MMGN:

• Saving of waypoints into a json file (with file name prompt)

• Loading saved waypoints from a json file spcecified by file name. The
trajectory thus loaded is displayed and can be executed on any planning
group. This is a yet unsolved problem, since a loaded trajectory can only
meaningfully be executed on the planning group for which it was created in
the first place. It should however be straight forward to include the planning
group information in the saved file and check planning group compatibility
when loading trajectories.

• Editing a loaded waypoint trajectory and saving the edited trajectory under
a custom file name

In addition, the user can also perform the following actions by giving commands
to the MI in the shell:

• Plan a trajectory to a hard coded pose goal and execute the trajectory

• Plan and execute a cartesian path from hard coded waypoints

All of the commands in this section can be issued for both arms. The user is
prompted for the target planning-group by the MI. For the head planning group
currently only joint-state goals can be executed.

Chapter 4

Discussion

4.1 Solution approaches concerning excessive friction
in LSH/RSH joints

The problem named range-limit-weakness mentioned in section 3.1 also occurs if
the target angle is the min or max duty cycle. This implies that the A12-T lacks
only very little torque, to be able to overcome the above average friction of the
LSH/RSH joint

Since the A12-T works perfectly for all other joints, it is doubtful if acquiring
motors with a stronger torque is reasonable. The costs have to be compared to
the efforts needed to decrease the friction of the LSH/RSH threads. Possible
solution approaches for that might be:

• Decrease friction of the edges of the holes in the plates through which the
problematic threads traverse. It is probably worth refabricating plate C’,
since the two newly drilled holes could not be post-processed in the same
way the other holes had. Namely, the circular edge between hole and plate
is sharper than it is for the other holes.

• Decrease wheel diameter of wheels on motors connected to LSH/RSH,
which would increase the torque applied to the threads.These two joints
only require a 90° ROM, which wheels with smaller diameter should be
able to provide.

• Explore different lubricants. The one applied during this thesis ("Toolcraft:
Silikonspray") did decrease the friction noticeably but not satisfactorily.

• Since two servos are not used, it could be tried to attach their threads to the
RSH/LSH threads such that two motors pull per problematic joint instead
of one.

• Explore different thread materials, find one with less friction than the one
used currently.

28

4. Discussion 29

• Find a new route for the threads connecting the joints and their respective
wheels. This approach is probably very costly since it would mean that
some parts of the robot would have to be redesigned and refabricated.

4.2 Solution approach concerning imprecise URDF data

As mentioned in section 3.2 for some joints the physical joint limits diverge from
what is written in the URDF. The problem is that this divergence manifests itself
in Rviz. It can be visually seen, that the robot state in ROS slightly differs from
the physical robot.

The only obvious solution is to readjust the joint limits in the URDF such that
they better match the physical limits. This solution would however depend on
the configuration of the turnbuckles, wheels and threads to remain constant after
the URDF modification.

4.3 Shortcomings of current control mechanisms

4.3.1 Dual arms

Although the MMGN currently allows for trajectory generation for individual
planning groups, no method has been implemented yet to control multiple plan-
ning groups simultaneously. The following approaches could mitigate this.

LAAS Pick and Place MoveIt Plugin

The "Laboratory for Analysis and Architecture of Systems" (LAAS) based in
Toulouse, France has created a MoveIt plugin which enables a MoveIt configured
robot to perform dual arm pick and place actions.

Their plugin uses two action servers which together can process a dual arm pick
and dual arm place request and generate a planning request [11].

This plugin could potentially enable the robot monkey to pick and place objects
within his range. Further, from what can be read in their documentation, it
should also be possible to create dual arm trajectories without picking and placing
an object [12]. Dual arm trajectories of arbitrary length could potentially also
be created, by chaining saved dual arm start-to-end-state trajectories together.

Even though there exists a tutorial on how to use this plugin [13], the complete
source code is unavailable to the public. Still, the tutorial should at least get us
started on using their plugin for dual arm pick and place actions.

4. Discussion 30

Dual Arm Single Pose Goal

The MoveIt tutorial collection contains tutorials for an example robot called
PR2, which also features two arms. The source code for this PR2 robot tutorial
contains a section about dual arm pose goals [14]. The approach starts by creating
a planning group containing two robot arms (presumably using the MSA). For
this new dual_arm planning group, two different pose goals are set, each with a
different target eef and a dual arm trajectory is planned for the two pose goals.
This method could enable the monkey robot to execute dual arm pose goals.

However, there are two potential implementation pitfalls to consider:

• The planning groups defined in the MSA in this project each contain one
kinematic chain, e.g base_link to LH_Link. Since two arms cannot be
included in the same kinematic chain and there is no apparent way to
include multiple kinematic chains in a planning-group, it remains unclear
how a dual arm planning_group can be created with the MSA.

• The documentation for the PR2 tutorials state the code was developed for
ROS Indigo, which is 5 ROS versions older than ROS Noetic, the version
used for this project. Thus it is unclear, how well the mentioned methods
can be adapted for ROS Noetic.

Merging of JointTrajectories

Planning a cartesian path containing multiple planning groups simultaneously
is currently not possible with MoveIt. However, it might be possible to create
seperate cartesian paths for multiple planning groups and merge the generated
JointTrajectories into one JointTrajectory [15]. The main challenges here would
be the implementatoin of the JointTrajectory-merging and handling potential
collisions of the two eefs.

Multiple move-group nodes

Currently there is one move-group interface being run simultaneously with one
joint-state-listener-node (a node subscribed to the joint_state topic). It could be
tried to duplicate both nodes, modify the listener nodes such that they each only
listen to their respective move-group node and such that they only listen to/relay
target joint states for their planning group. Running multiple move-group nodes
is possible, as was confirmed during the project.

4. Discussion 31

4.3.2 Synchronization of plans for different planning groups

The two last mentioned approaches for dual arm trajectories, Merging of Joint-
Trajectories and Multiple move-group nodes, could both be used to to synchronize
the execution of JointTrajectories of different planning groups.

To synchronize the JointTrajectories by merging, the merging method must allow
a temporal offset to be set between the execution of the different JointTrajecto-
ries.

To synchronize the JointTrajectories by duplicating the move-group and listener
nodes, another node would have to be implemented which contains a JointTra-
jectory execution schedule. This node would then inform the move-group nodes
when they should start publishing their trajectories to their respective listener
nodes.

4.3.3 Integration of different saved motions into multi motion
sequences

The previous sections discussed how the execution of different JointTrajectories
could be implemented and synchronized. In order to store created JointTrajecto-
ries and manage them efficiently the same method can be used which is used in
the project to save the JointTrajectories describing cartesian plans. This method
is the ROS package called rospy_message_converter [16].

This method enables us to save any ROS message (including JointTrajectories)
to a json file and to later retrieve the the ROS message from the json file.

Taking sections 4.3.1 and 4.3.2 into account it should thus be possible to plan
JointTrajectories for different planning-groups, save/load them and synchronize
their execution.

4.4 Shortcomings of waypoint management

As mentioned in section 3.5 the developed methods enable the user to save, load
and extend saved waypoint collections. What is not yet implemented is free
editing of the saved waypoint collections, i.e:

• Removal of a waypoint at a arbitrary index of a waypoint collection

• Insertion of a waypoint at a arbitrary index of a waypoint collection

Implementing these two functionalities should however be fairly straight forward,
since the waypoints are currently being saved as ROS PoseArray. Thus common
array manipulations should suffice to implement the above mentioned function-
alities.

4. Discussion 32

4.5 Natural movements

When the search for a motion planning framework started, one concern was that
methods such as cartesian path planning would lead to stiff, abrupt movements
of the moneky robot. On a purely visual basis (which is all the living marmoset
monkeys will have when interacting with the robot) the monkey robots move-
ments look natural. It must however be noted that there are no path planning
constraints in place, which enforce this. It is thus possible that MoveIt’s com-
pute_cartesian_method returns a JointTrajectory containing unnatural looking
transitions between poses.

Blend_radius with Pilz Industrial Planner

If the monkey robot’s execution of cartesian paths are perceived to be too stiff
and abrupt, a possible solution could be to use the Pilz Industrial Motion Planner
(Pilz IMP) instead of the Open Motion Planning Library (OMPL) currently in
use (both of these live inside the MoveIt framework). The Pilz IMP offers the so
called sequence capability which (similar to the compute_cartesian _path method
in OMPL) enables the user to plan a path containing mulitple poses [17]. The
sequence capability offers as input an argument called blend_radius. This allows
for two straight line segments of a path to be blended together via a round corner
(as displayed in figure 4.1).

Making use of the sequence capability of the Pilz IMP could potentially make
the monkey robots execution of multi pose trajectories look more natural.

Figure 4.1: Softening of straight line path segments with the Pilz IMP (figure
taken from [17])

Bibliography

[1] V. Marx, “Neurobiology: learning from marmosets,” Nature Methods, vol. 13,
pp. 911–916, 2016. [Online]. Available: https://doi.org/10.1038/nmeth.4036

[2] S. Biswas, “Why is the efficiency of low power motors lower than high power
motors?” 06 2014.

[3] LibHunt, “Similar projects and alternatives to ros.” [Online]. Available:
https://www.libhunt.com/r/ros

[4] LibHunt, “Similar projects and alternatives to moveit2.” [Online]. Available:
https://www.libhunt.com/r/moveit2

[5] KST, “Kst x10 data sheet.” [Online]. Available: https://cdn.shopify.com/s/
files/1/0570/1766/3541/files/X10_SPECIFCATION.pdf?v=1675231593

[6] KST, “Kst a12-t data sheet.” [Online]. Available: https://cdn.shopify.com/
s/files/1/0570/1766/3541/files/A12-T.pdf?v=1673245327

[7] ROS, “Ros nodes.” [Online]. Available: https://wiki.ros.org/Nodes

[8] L. Miller, “How to control a servo with raspberry pi.” [Online]. Available:
https://www.learnrobotics.org/blog/raspberry-pi-servo-motor/

[9] MoveIt!, “Moveit! move group node concepts.” [Online]. Available:
https://moveit.ros.org/documentation/concepts/

[10] I. S. (from ROS), “Moveit! move group class reference.” [Online]. Available:
https://docs.ros.org/en/jade/api/moveit_commander/html/classmoveit_
_commander_1_1move__group_1_1MoveGroupCommander.html

[11] LAAS, “Moveit dual arm planning concept.” [Online]. Available: https:
//github.com/laas/moveit_dual_arm_planning/wiki/concept

[12] LAAS, “movegroupx (extended) overview.” [Online]. Available: https:
//github.com/laas/moveit_dual_arm_planning/wiki/move_groupx

[13] LAAS, “Dual arm pick and place tutorial.” [Online]. Avail-
able: https://homepages.laas.fr/jcortes/DualArmManipTuto/doc/pr2_
tutorials/dual_arm_pick_place/doc/dual_arm_pick_place_tutorial.html

[14] Moveit, “Dual arm pose goals.” [Online]. Available:
https://github.com/ros-planning/moveit_tutorials/blob/indigo-devel/
doc/pr2_tutorials/planning/src/move_group_interface_tutorial.cpp

33

https://doi.org/10.1038/nmeth.4036
https://www.libhunt.com/r/ros
https://www.libhunt.com/r/moveit2
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/X10_SPECIFCATION.pdf?v=1675231593
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/X10_SPECIFCATION.pdf?v=1675231593
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/A12-T.pdf?v=1673245327
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/A12-T.pdf?v=1673245327
https://wiki.ros.org/Nodes
https://www.learnrobotics.org/blog/raspberry-pi-servo-motor/
https://moveit.ros.org/documentation/concepts/
https://docs.ros.org/en/jade/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html
https://docs.ros.org/en/jade/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html
https://github.com/laas/moveit_dual_arm_planning/wiki/concept
https://github.com/laas/moveit_dual_arm_planning/wiki/concept
https://github.com/laas/moveit_dual_arm_planning/wiki/move_groupx
https://github.com/laas/moveit_dual_arm_planning/wiki/move_groupx
https://homepages.laas.fr/jcortes/DualArmManipTuto/doc/pr2_tutorials/dual_arm_pick_place/doc/dual_arm_pick_place_tutorial.html
https://homepages.laas.fr/jcortes/DualArmManipTuto/doc/pr2_tutorials/dual_arm_pick_place/doc/dual_arm_pick_place_tutorial.html
https://github.com/ros-planning/moveit_tutorials/blob/indigo-devel/doc/pr2_tutorials/planning/src/move_group_interface_tutorial.cpp
https://github.com/ros-planning/moveit_tutorials/blob/indigo-devel/doc/pr2_tutorials/planning/src/move_group_interface_tutorial.cpp

Bibliography 34

[15] R. Answers, “Forum discussion about merging robottrajectories and
handling collisions.” [Online]. Available: https://answers.ros.org/question/
370136/planning-for-a-dual-arm-robot-in-moveit/

[16] ROS, “Rospy message converter package summary.” [Online]. Available:
https://wiki.ros.org/rospy_message_converter

[17] ROS/Moveit, “Pilz industrial motion planner interface tutorial.” [Online].
Available: https://docs.ros.org/en/melodic/api/moveit_tutorials/html/
doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.
html

[18] S. Sackett, “Solidworks to urdf using the sw2urdf plugin tutorial.”
[Online]. Available: https://www.youtube.com/watch?v=Id8zVHrQSlE&
list=PL6TtDG40DrFpPf7OQagUNSW8dZMAvs5F0

[19] Moveit, “Moveit setup assistant tutorial.” [Online]. Avail-
able: https://ros-planning.github.io/moveit_tutorials/doc/setup_
assistant/setup_assistant_tutorial.html

[20] F. Reuleaux, “The kinematics of machinery (trans. and annotated by a. b.
w. kennedy), reprinted by dover, new york (1963)),” 1876.

https://answers.ros.org/question/370136/planning-for-a-dual-arm-robot-in-moveit/
https://answers.ros.org/question/370136/planning-for-a-dual-arm-robot-in-moveit/
https://wiki.ros.org/rospy_message_converter
https://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html
https://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html
https://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html
https://www.youtube.com/watch?v=Id8zVHrQSlE&list=PL6TtDG40DrFpPf7OQagUNSW8dZMAvs5F0
https://www.youtube.com/watch?v=Id8zVHrQSlE&list=PL6TtDG40DrFpPf7OQagUNSW8dZMAvs5F0
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html

Appendix A

RPP Setup

A.1 Operating system

Each ROS distribution is meant to be used with a specific Ubuntu distribution.
For Ros Noetic the corresponding Ubuntu distribution is 20.04. For unknown
reasons it proved impossible to install Ubuntu 20.04 on the RPP, thus the RPP-
native "Raspberry Pi OS" (previously known as Raspbian) was installed.

With Raspbian installed a simple ROS environment was set up. This includes
configuring the so called ROS-MASTER-URI on both devices connected to the
ROS-network and setting the so called ROS-IP to the respective IP-Address of
the device (see section B.2).

When work with the ROS-based framwork MoveIt started certain python pack-
ages could not be installed on Raspbian.

It was thus decided to switch to the Ubuntu 20.04 Server distribution for the
RPP. This allowed for much easier installation of ROS packages and decreased
CPU usage due to the headless (lack of GUI) setup.

The ubuntu server image used in this project is called "ubuntu-20.04.5-preinstalled-
server-arm64+raspi.img.xz" and can be found on https://old-releases.ubuntu.
com/releases/20.04/.

It proved to be very convenient to use the RPP imager software to flash the
image, since it allows the user to specify a network access, which the RPP will
already know and try to connect to when it first boots. Thus, one can directly
ssh into the RPP over the specified network access.

A-1

https://old-releases.ubuntu.com/releases/20.04/
https://old-releases.ubuntu.com/releases/20.04/

RPP Setup A-2

A.2 Static IP Setup

Each time the RPP boots it can potentially be assigned a new IP-Address by the
router.

Since the ROS-setup depends on the correct IP-Address being used, this frequent
change of IP-Address has to be manually bypassed.

In order to mitigate this a static IP-Address can be set on the RPP. This can be
done by adding a file with the following content in /etc/netplan on the RPP:

on the RPP in /etc/netplan
network:

version: 2
wifis:

renderer: networkd
wlan0:

access -points:
<WLAN -NAME >:

password: <WLAN -PWD >
dhcp4: no
optional: true
addresses:

- <DESIRED -IP >/24 #desired IP
gateway4: <ROUTER -IP > # can be obtained with $ip r
nameservers:
addresses:
- 8.8.8.8

Appendix B

ROS Setup

B.1 Overview

The development of ROS follows the yearly rhythm of Linux Ubuntu Distribu-
tion releases, with each ROS distribution being tailored to a specific Ubuntu
Distribution. Starting from 2020 a new ROS version (ROS 2) was released which
entailed certain paradigm changes in the areas of security, Real-Time Computing
and Diverse Networks to name a few.

Since most knowledge and practical experience of not only the writer of this thesis
but also the global ROS User community revolves around ROS1 and ROS1 offers
all the functionality desired for this project it was decided to use ROS 1. More
specifically, the latest and last distribution of ROS1; ROS Noetic.

A straight forward way to install Ros Noetic on the RPP is described on:

https://wiki.ros.org/noetic/Installation/Ubuntu.

For this thesis ros-noetic-desktop-full was installed on both the RPP and the
desktop PC, but probably ros-noetic-ros-base would suffice for the headless RPP.

B.2 ROS Environment Variables Setup

To setup two devices (e.g a desktop PC and a RPP) the necessary shell commands
look as follows (with the RPP as ROS-MASTER):

#for the RPP with IP-Address: <RPP_IP >
#execute these commands in the shell
export ROS_IP=<RPP_IP >
export ROS_MASTER_URI=http://<RPP_IP >:11311

#for the desktop PC with IP-Address: <PC_IP >
#execute these commands in the shell
export ROS_IP=<PC_IP >
export ROS_MASTER_URI=http://<RPP_IP >:11311

B-1

https://wiki.ros.org/noetic/Installation/Ubuntu

Appendix C

MoveIt Setup

C.1 Overview

Once ROS Noetic has been installed the next step is to install the matching
MoveIt version. For this project, this was achieved by following the steps on:

https://ros-planning.github.io/moveit_tutorials/doc/getting_started/
getting_started.html

C.2 MoveIt Setup Assistant

C.2.1 Launch Assistant

In order to use MoveIt with a custom robot a moveit_config package has to be
generated by using the MSA. To initially launch the MSA, cd into your catkin
workspace, run first:

source devel/setup.bash

and then run:

roslaunch moveit_setup_assistant setup_assistant.launch

This will startup the MSA. In the MSA, click on "Create New MoveIt Configura-
tion Package" and select the URDF you have created with the URDF exporter.

C.2.2 URDF Exporter

The URDF needed for the moveit config package can be generated by the Solid
Works URDF Exporter Plugin, provided there exists a STEP file of the robot
model. This plugin enables the user to already configure certain aspects of the
URDF file in SW, such as joint limits and which links belong to which arm. A
windows executable installer for the plugin can be found on:

C-1

https://ros-planning.github.io/moveit_tutorials/doc/getting_started/getting_started.html
https://ros-planning.github.io/moveit_tutorials/doc/getting_started/getting_started.html

MoveIt Setup C-2

https://github.com/ros/solidworks_urdf_exporter/releases

Note that SW is only available for windows and macOS.

The whole process of generating the URDF file, from creating the joint axes in
SW to importing it in the MSA is well described in a YouTube tutorial [18]. To
avoid extending the length of this paper, kindly refer to the Youtube tutorial in
order to see all necessary steps for generating the URDF file.

C.2.3 Configuring the moveit config package

A detailed description of all configurable features in the MSA can be found here:

https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/
setup_assistant_tutorial.html

The only critical parts needed to run the nodes developed in this project are the
configuration of the the virtual joints, the planning groups and of the eef. These
should be configured according to figures C.2,C.3 and C.1.

Figure C.1: Configuration of the eef in MSA

Figure C.2: Configuration of virtual joints in the MSA

https://github.com/ros/solidworks_urdf_exporter/releases
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html

MoveIt Setup C-3

Figure C.3: Configuration of planning groups in the MSA

Once these configurations have been completed, the user can give the moveit
config package a meaningfull name such as monkey_robot_moveit_config and
save it in the /src folder of the catkin workspace.

Note that in the second step of the MoveIt Setup Assistant the Self-Collision
Checking can be optimized by generating a collision matrix. "This searches for
pairs of robot links that can safely be disabled from collision checking, decreasing
motion planning time" [19].

C.2.4 Downloading developed packages

The packages developed during this project can be found on the following Github
respository:

https://github.com/multiplexcuriosus/monkey_robot_codebase

Make sure that the monkey_interface and monkey_complete package are present
in the src folder of the catkin workspace of your PC and the package mon-
key_listener is present in the src folder of the catkin workspace of the RPP.

https://github.com/multiplexcuriosus/monkey_robot_codebase

MoveIt Setup C-4

At this point you should have generated your own moveit-config pkg and it should
also be present in the src folder of the catkin workspace of your PC. Whether the
setup works with the monkey_robot_moveit_config package developed during
this project is discussed in the ReadMe of the Github Repository from which the
monkey_interface package was downloaded.

C.2.5 Building all packages

In the workspaces on your PC and on the RPP run:

catkin build or

or

catkin build <name -of-single -pkg >

if you want to only build one package (which might be desirable since building
all ca. 50 MoveIt related packages takes 10 min).

C.2.6 Launching the nodes

In order to launch mulitple ROS nodes at once, possibly with mulitple input
arguments for each, ROS makes use of so called launch files. These files (usually
in XML format) contain all the information ROS needs to know about which
nodes to launch, in which order and with which input arguments.

For our convenience the MSA has generated a demo launch file called demo.launch
inside the generated moveit config package. This demo.launch file among other
things contains instructions to launch a Rviz node and a MoveIt motion planning
node.

In order to make use of the nodes written in this project we first run (in a terminal
T1):

roslaunch <moveit -config -pkg > demo.launch

This will launch multiple nodes, including Rviz and the MoveIt motion planning
plugin. You should see an Rviz window appear with a panel labeled MotionPlan-
ning. Then we open a second terminal T2, navigate into the catkin workspace,
source the setup.bash file and run:

rosrun monkey_interface monkey_interface.py

In T2 there should soon appear some options and a prompt to choose one of the
options. These options refer to the planning methods described in section E.1.

Appendix D

Controlling the Servos

D.1 Overview

A python script joint_control.py was written to control the motors. This script
can be launched either as python3 script in the shell or as node inside the ROS
network. The code examples in the remainder of this chapter use the shell
method.

To run the script as a ROS node simply replace:

python3 <script > <arguments >

with:

rosrun monkey_listener <script > <arguments >

where monkey_listener is the name of the package the <script> is contained in.
Running the script as ROS node will only work if the ROS infrastructure is setup
as described in section B.2.

D.1.1 Control formats

The joint-control-script mentioned above offers different ways (control formats)
to control the servo motors.

Duty Cycle

The first control format is setting the duty cycle of a servo motor. The KST-A12
can be moved to the positions -50°/0/50° by providing the corresponding pulse
lengths 1000µs, 1500 µs, 2000 µs. Using 50Hz this corresponds to duty cycles of
4.5%, 7.5% and 10.5%.

D-1

Controlling the Servos D-2

Range Presets

The next control format originates from the following two problems:

1. Finding a mapping between duty cycle (∈ [4.5, 10.5]) and minimal/maximal
rotation of a joint. Minimal and maximal here don’t merely correspond to
the range permitted by the metal body joints of the robot, but instead to
the range resulting from all the factors listed in section 2.1.8.

2. The inconsistent thread attachment mentioned in section 2.1.6.

To address these issues a second system was introduced, where each joint object
in the code stores its duty cycles values for certain joint states.

Presets
ID Param Description
DTmin 0 Joint Range Minimum
DTmiddle 0.5 Joint Range Middle
DTmax 1 Joint Range Maximum
DTdef def Resting position

Table D.1: Presets introduced to facilitate testing.

Now we can for each joint J experimentally determine the duty cycles DTmin,
DTmax which bring J to his minimal and maximal rotation. In the python scripts
joint_control.py and monkey_listener.py we can then save DTmin and DTmax.
Additionally we can save the duty cycle value corresponding to the middle DTmin

and DTmax and a DTdef value, which stores the duty cycle of the position the
joint has when its corresponding planning group is in its default position. The
vales in the column Param in table D.1 are the possible input arguments for the
methods described in sections D.3,...

PiGPIOFactory()

As mentioned in section 2.4.2 there was a lot of jitter initially, which could be
eliminated by using the PiGPIOFactory() factory to control the servos. The servo
control functions offered by the gpiozero library accept as input a float between -1
and 1. Since this method reduced the jitter significantly it is used now to control
the servos. In order to build on top of the Range Presets, mapping functions
were created to map from duty cycle to [-1,1].

Controlling the Servos D-3

D.2 Prerequisites for launch of joint control node

Running the node as python3 script from the shell

The "pigpio daemon" has to be running. He can be started by executing the
following command in a shell:

sudo pigpiod

Running the node as ROS node with rosrun

The prerequisites are:

• On the ROS master device (typically the RPP) the command roscore was
executed in a terminal. This starts the ROS network.

• The ROS environment variables were setup according to section B.2

• The pigpio daemon is running

D.3 Set Duty Cycle

Set the duty cycle on a joint by running:

python3 monkey_control_node.py raw NH 4.5

where raw specifies that the control format is duty cycles, NH is the target joint
and 4.5 is the duty cycle to be written to the NH servo motor.

The servos can be set to the min, half, max or def position by using the command:

python3 monkey_control_node.py single NH 0

where single refers to the mode of setting a min,half,max state and 0 refers to
the min state ({min, half, max} := {0, 0.5, 1}).
In order to set all joints to their def position run:

python3 monkey_control_node.py alldef

Controlling the Servos D-4

D.4 Monkey_listener

To enable control of the physical robot the monkey_listener package launches a
node, which does two things.

• It it subscribed to the joint_states topic.

• When the subscriber reads new joint-state data, it uses the exact same
methods as the joint_control.py script to write the received joint-states to
the servo motors.

Thus this node must be running whenever we wish to control the physical robot.

Appendix E

Monkey Interface

E.1 Overview

During this project a ROS node called monkey-interface was created which allows
the user to use the functionalities described in section 3.5.

In order to make use of the functionalities, all relevant nodes must have been
launched according to the steps described in section C.2.6. The following figure
depicts the control flow of the monkey interface.

E-1

Monkey Interface E-2

E.2 Usage notes regarding mode [3]

Out of the box the eef of the monkey arms cannot be moved with the IM, since
there are not enough DOF per arm to allow free movement/manipulation of the
eef. In order to move the eef with the IM, the "Approx IK Solutions" options box
has to be ticked, such that approx. IK solutions are allowed. If the eef becomes
hard to move during workflow, it might be the case that this option was unticked
(e.g after a Rviz reset) without the tick disappearing. Simply untick and tick
the option again in such cases. This does not affect the position tolerance of
computing cartesian paths.

Appendix F

Abbreviations

F.1 Hardware

The following table lists the abbreviations used for all joints.

ID Joint Description
W Wrist
SH Shoulder horizontal
EB Elbow
SL Shoulder Lateral
H Hand
SF Shoulder frontal

Note that in the text, the joint ID’s will often have an ’L’ or ’R’ prepended to
indicate the left or right arm of the robot monkey.

F-1

Appendix G

Acknowledgments

I would like to express my gratitude towards:

• Joris Gentinetta, for his patient mentoring and skillful collaboration

• The D-ITET Wersktatt for the fabrication and adaptation of the robot

• Simon Steffens for the fabrication of the wheels

• Wolfger von der Behrens for ordering the parts

G-1

Glossary

end effector Part of a robotic arm, usually at the end of a kinematic chain.
Often contains a gripper to grasp objects. 20

kinematic chain Assembly of rigid bodies connected by joints to provide con-
strained motion [20]. 10

link Word used in the context of ROS and URDFs, referring to a geometrically
isolated physical part of the robot body. The head of the monkey robot for
example consists of two links. 16

pose Message type from ROS, contains a position (3D vector) and an orientation
(4d Quaternion). 19

screw locking agent Liquid "glue" which can be applied to screws up to M36
in order to lock the internal threads position in the external thread. For
this project "TOOLCRAFT Schraubensicherung mittelfest" was used. 11

Spiderwire Fisherman’s line with a tear resistance of 38.1 kg/0.33 mm, bought
at fischen.ch. 8

G-2

	Abstract
	1 Introduction
	2 Methods
	2.1 Hardware
	2.1.1 Metal model
	2.1.2 3D printed parts
	2.1.3 Power supply
	2.1.4 Threads
	2.1.5 Wheels
	2.1.6 Inconsistent thread attachment
	2.1.7 Turnbuckles
	2.1.8 Joint limits

	2.2 Plate modifications
	2.2.1 Motors

	2.3 ROS
	2.4 Raspberry Pi
	2.4.1 Pin Extension board
	2.4.2 Reduction of jitter by switching to PiGPIOFactory() for servo control

	2.5 URDF
	2.5.1 URDF exporter

	2.6 MoveIt
	2.6.1 Overview
	2.6.2 Planning Groups
	2.6.3 MoveIt Setup Assistant
	2.6.4 Move Group Node
	2.6.5 Interfacing the move-group-node via the Motion Planning Plugin for Rviz
	2.6.6 Interfacing the move-group-node via the moveit-commander

	2.7 Relaying joint_states via listener node

	3 Results
	3.1 Friction in the thread paths of joints LSH/RSH
	3.2 Imprecise joint range data in URDF
	3.3 Cartesian path planning
	3.4 Interactive Marker position vs. eef position
	3.4.1 Overview
	3.4.2 Workaround
	3.4.3 Automatic IK validation for newly set waypoints

	3.5 Saving and loading trajectories via the MMGN

	4 Discussion
	4.1 Solution approaches concerning excessive friction in LSH/RSH joints
	4.2 Solution approach concerning imprecise URDF data
	4.3 Shortcomings of current control mechanisms
	4.3.1 Dual arms
	4.3.2 Synchronization of plans for different planning groups
	4.3.3 Integration of different saved motions into multi motion sequences

	4.4 Shortcomings of waypoint management
	4.5 Natural movements

	Bibliography
	A RPP Setup
	A.1 Operating system
	A.2 Static IP Setup

	B ROS Setup
	B.1 Overview
	B.2 ROS Environment Variables Setup

	C MoveIt Setup
	C.1 Overview
	C.2 MoveIt Setup Assistant
	C.2.1 Launch Assistant
	C.2.2 URDF Exporter
	C.2.3 Configuring the moveit config package
	C.2.4 Downloading developed packages
	C.2.5 Building all packages
	C.2.6 Launching the nodes

	D Controlling the Servos
	D.1 Overview
	D.1.1 Control formats

	D.2 Prerequisites for launch of joint control node
	D.3 Set Duty Cycle
	D.4 Monkey_listener

	E Monkey Interface
	E.1 Overview
	E.2 Usage notes regarding mode [3]

	F Abbreviations
	F.1 Hardware

	G Acknowledgments

